Practical Music Theory

Music theory can be complex. But knowing enough to be able to apply it to practical goals can speed learning, aid improvisation, and give you a sense of empowerment.
Terms 2
Steps 4
Scales 5
Keys 8
Intervals 9
Chords 10
Circle of Fifths 12

Terms

Musical terms can be confusing when they are used interchangeably.

Key = Lever

A physical key is a lever that produces a musical tone when pressed.

Key = Scale

A musical Key is the first tone of a Scale. Example: Key of C.

Ambiguity: The Key of C (scale) begins on the C key (lever).

Tone $=$ Sound

Tones are musical sounds (vibrations) produced when you press a key. Tones vary in pitch (frequency) from low to medium to high.

Note $=$ Symbol

Notes are symbols that appear on a musical staff to indicate which keys (levers) are to be pressed.

Ambiguity: Technically, notes (symbols) exist only on paper, but tones (sounds) are also called "notes."

Step $=$ Movement

Steps are melodic movements between tones.
Like walking up a staircase, playing steps on a keyboard requires physical movement.

Ambiguity: Each key (lever) is a halfstep which produces a semitone. Two keys make a whole step which produces a whole tone.

Key $=$ Lever
Do Re Mi Fa So La Ti Do
Key = Do

Step $=$ Movement

Scale $=$ Series

A scale is a named series of keys/tones/notes played in a specific sequence of steps.
Example: Scale of Bb Major
Scale comes from the Italian scala which means ladder. Imagine climbing a scalar ladder.

The scale determines the pitch (frequency, high or low), the general mood (happy, sad, bluesy, exotic...), and the accidentals (flats/sharps) of a song.

The scale is the blueprint for constructing related Intervals and Chords.

Interval = Distance

An interval is the musical distance in pitch between keys/tones/notes of a scale. (The physical distance varies based on the white or black keys in a scale.) Example: $4^{\text {th }}$ Interval

Intervals affect the tonal quality of a song. In general, the $3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}$, and $8^{\text {th }}$ (octave) intervals sound pleasant or harmonious, while the $2^{\text {nd }}$ and $7^{\text {th }}$ intervals sound unpleasant or dissonant. However, when combined with other notes, the $2^{\text {nd }}$ and $7^{\text {th }}$ intervals can produce a modern or more sophisticated sound.

When composing or improvising, intervals can help you figure out which tones to add to enhance other tones.

Chord $=$ Group

A chord is a named group of keys/tones/notes.
Example: F chord
Chords add harmony to enhance a song's melody (the tune that you'd hum or sing).

Memorizing chord patterns can dramatically reduce the time it takes to learn and play songs.

Steps

Steps are melodic movements between tones.
They are the building blocks for the scales, intervals, and chords.

It takes $\mathbf{2}$ keys to make a Whole Step

Black-White Step

White-Black Step

White-White Step

Whole Steps $\times 2=$ keys
Multiply the numbers of steps by 2 to find how many keys were needed to build them.

2 Whole Steps $\times 2=4$ keys

6 Whole Steps $\times 2=12$ keys
keys $/ 2$ = Whole Steps
Divide the number of keys by 2 to find how many steps they can build.

4 keys / $2=2$ Whole Steps

12 keys / 2 = 6 Whole Steps

Scales

A scale is a named series of keys/tones/notes played in a specific sequence of steps. Although practicing scales is associated with endless drill and drudgery, a knowledge of scales can be invaluable, especially when composing or improvising.

Root of a Scale

A scale begins on and is named after its Root key (also called its keynote). For example, a C scale (Key of C) begins on the C key (lever).

12 Possible Roots

A piano has multiple octaves of tonally-related 7 white and 5 black keys for a total of 12 Roots from which to build scales.

Enharmonic Roots

Enharmonic (same tone, different name) Roots are identical. So are their scales. For example, since $\mathrm{C}^{\#}=\mathrm{D}^{\mathrm{b}}$, their scales are the same,

12 Roots except the $\mathrm{C}^{\#}$ scale uses sharps and the D^{b} scale uses the equivalent flats. In any case, there are still only 12 actual roots.

Scale Step Patterns

Over the centuries, numerous scale step patterns have evolved. For example:

* Chromatic Scale: All half steps.
* Whole-Tone Scale: All Whole steps.
* Diatonic [dii-uh-TAW-nik] Scale: Combinations of Whole and half steps.

Scale Types

There are dozens of scales (ancient ones are called Modes). We'll explore three:

* Major: Follows a specific diatonic step pattern. Most common scale.
* Relative (Natural) Minor: Same sharps or flats as Major but Root $=6^{\text {th }}$ key of the Major scale.
* Harmonic (Parallel) Minor: Same Root as Major but with flatted $3^{\text {rd }}$ and $6^{\text {th }}$ keys.

StepCount vs. KeyCount

Scales are created by starting at the Root key and counting up a prescribed sequence of Whole and/or half steps. But counting steps can be tricky because $1 / 2$ step $=1$ key and 1 step $=2$ keys. It's generally easier to remember and count by the keys that make up the steps.

Counting A Sequence

Example: (Root) Whole half Whole

The StepCount (R) Wh W can be more difficult to count than the KeyCount (R) 212.

Major Diatonic Scale

The Major Diatonic Scale is the basis of most classical and modern music. It produces the familiar Do-Re-Mi-Fa-So-La-Ti-Do melody by following this specific sequence:
StepCount: (Root) Whole Whole half Whole Whole Whole half $=(\mathrm{R}) \mathrm{W} \mathrm{Wh}$ W W Wh

Major scales are used to compose many kinds of songs, including those played by marching bands. To remember the KeyCount of a Major Scale, imagine that it is the phone number of your favorite band leader,
Major Scale. Memorize the Major's phone number, starting with the area code (R) followed by two groups of 2 s that end with 1 s .
${ }_{\text {EPBrainAid }}$
(R) 221-2221

C-Major Scale

Starting from the (R)oot C, the 221-2221 KeyCount sequence shown below creates the C-Major scale. Observe that it consists of all white keys. There are no sharps or flats. Test it on your keyboard to ensure that it follows the standard Do-Re-Mi-Fa-So-La-Ti-Do tune.

(R)

$$
\begin{array}{cccccccc}
\text { C } & \text { D } & \text { E } & \text { F } & \text { G } & \text { A } & \text { B } & \text { C } \\
\text { Do } & \text { Re } & \text { Mi } & \text { Fa } & \text { So } & \text { La } & \text { Ti } & \text { Do }
\end{array}
$$

E-Major Scale

To Do: Starting from the Root E, count keys, draw arrows, and pencil in the Major's phone number in the circles. Test it with Do-Re-Mi..., then write the key names in the boxes beneath. There are 4 sharps. E -Major Scale: $\mathrm{EF} \mathrm{F}^{\sharp} \mathrm{G}^{\sharp} \mathrm{ABC} \mathrm{C}^{\#} \mathrm{D}^{\sharp} \mathrm{E}$

You can use this method to derive all 12 Major scales.

Relative Minor Scale

Starts on the $6^{\text {th }}$ key of the Major Scale. Has the same sharps or flats (Key Signature).
StepCount: (Root) Whole half Whole Whole half Whole Whole $=(\mathrm{R}) \mathrm{WhW} \mathrm{WhWW}$ KeyCount: (Root) 2keys 1key 2keys 2keys 1key 2keys 2keys = (R) 2122122

Imagine that Major Scale gave his nephew a Key to his house so he could run errands for him. This relative is an underage minor whose cell phone number reflects his strong desire to be 21 .
(R) $\underline{212-\underline{2122}}$

A-minor scale (Relative to C-Major Scale)
The $6^{\text {th }}$ key of the C-Major scale is \mathbf{A}. We'll start below Middle C to keep the new scale in voice range then apply the 212-2122 KeyCount. This scale has the same Key Signature as C-Major with no sharps or flats.
Test a Relative scale by starting Do-Re-Mi... on its $3^{\text {rd }}$ key, which is the Root of its related Major scale.

To test the A-minor scale, start on C and play Do-Re-Mi-Fa-So-La then drop down to A-minor's $2^{\text {nd }}$ key and finish with Ti -Do to complete the tune at a lower pitch.

Harmonic Minor Scale

Starts on the Root of the Major Scale but flats the $3^{\text {rd }} \&$ the $6^{\text {th }}$ keys.

> StepCount: (Root) Whole half Whole Whole half Whole+half half $=(\mathrm{R}) \mathrm{WhW} \mathrm{Wh}$ Wh h KeyCount: (Root) 2keys 1key 2keys 2keys 1key 3keys 1 key $=(\mathrm{R}) 21221131$

Imagine a harmonica-playing minor band member who begins marching from the same Root as Major Scale but plays a couple of flat tones along the way. His phone number matches the Relative minor scale but ends with his age: 31 .

(R) 212-21 $\underline{11}$

C-minor scale (Harmonic to C-Major)

Starting on the Root C of the C-Major scale, the
(R) 212-2131 KeyCount produces the harmonic

C-minor scale. Observe the flatted $3^{\text {rd }}$ and $6^{\text {th }}$ keys.
There is no familiar tune to test this scale, but it will sound somewhat foreign or exotic, like Arabian Nights music.

A musical Key is the first tone of a Scale. A Key Signature consists of the sharps or flats that appear between the Clef and Time Signature at the beginning of a song. Imagine a Key completing a circuit CKT [Clef-Key-Time]. As a convenience to composers, a Key Signature's sharps or flats apply to every related note in a song (unless canceled by a natural sign). But the player has to remember/play them all!

Empty Key Signature

Accidentals None

Major (minor) Key C (Am)

Accidentals	Major (minor)
$\mathrm{B}^{\mathrm{b}} \quad$ First Flat $=$ Key of F	F (Dm)
$\widehat{\mathrm{B}^{\mathrm{b}}} \mathrm{E}^{\mathrm{b}}$	$\mathbf{B}^{\mathbf{b}}$ (Gm)
$B^{b} E^{\text {b }} A^{\text {b }}$	$\mathbf{E}^{\mathbf{b}}(\mathrm{Cm})$
$\mathrm{B}^{\mathrm{b}} \mathrm{E}^{\mathrm{b}} \widehat{\mathrm{A}}^{\text {b }} \mathrm{D}^{\mathrm{b}}$, Key = 1 flat back	$\mathbf{A}^{\mathbf{b}}$ (Fm)
$B^{\text {b }} \mathrm{E}^{\mathrm{b}} \mathrm{A}^{\mathrm{b}} \mathrm{D}^{\text {b }} \mathrm{G}^{\text {b }}$	$\mathbf{D}^{\mathbf{b}}\left(\mathrm{B}^{\mathrm{b}} \mathrm{m}\right)$
$B^{b} E^{b} A^{\text {b }} \mathrm{D}^{\mathrm{b}} \mathrm{G}^{\mathrm{b}} \mathrm{C}^{\mathrm{b}}$	$\mathbf{G}^{\mathbf{b}}\left(\mathrm{E}^{\mathrm{b}} \mathrm{m}\right)$
	$\mathbf{C b}^{\mathbf{b}}$ (${ }^{\text {b }} \mathrm{m}$)

Sharp Key Signatures

Sharps

Major (minor) Key

G(Em)
D (Bm)
A $\left(\mathrm{F}^{\#} \mathrm{~m}\right)$
$\mathbf{E}\left(\mathrm{C}^{\#} \mathrm{~m}\right)$
B $\left(\mathrm{G}^{\#} \mathrm{~m}\right)$
$\begin{array}{llllll}F^{\#} & C^{\#} & G^{\#} & D^{\#} & A^{\#} & E^{\#} \\ F^{\#} & C^{\#} & G^{\#} & D^{\#} & A^{\#} & E^{\#}\end{array} B^{\# \nearrow}$ خ
Flat Key Signatures

Relative Minor Key
Starts on the $6^{\text {th }}$ key of its Major scale and shares the same Key Signature. In general, if a song ends on a Major chord, it is in the Major Key; if it ends on a minor chord, it is in the Relative Minor Key.

Observe that flat and sharp letters are reversed: (BEADGCF) ${ }^{\text {b }}$ vs. (FCGDAEB) ${ }^{\text {* }}$

An interval is the musical distance in pitch between keys/tones/notes of a scale.
Scale intervals are numbered by their distance from the Root key.

Interval Positions

In a scale, the Root is in the 1st interval position followed by the $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$, etc. up to the $8^{\text {th }}$ (octave) interval position.

Interval KeyCounts

To find intervals for any Major Scale, count keys from the Root to each key as shown below for the C-Major scale.

C-Major Scale

$5^{\text {th }}$ Interval : KeyCount $=7$

3rd Interval : KeyCount = 4

$6^{\text {th }}$ Interval : KeyCount $=9$

$7^{\text {th }}$ Interval : KeyCount $=11$

Interval Position:	1st	2nd	3rd	4th	5th	6th	7th	8th
Interval KeyCount	(R)	2	4	5	7	9	11	12
Perfect Intervals	P			P	P			P

The Perfect intervals ($1^{\text {st }}, 4^{\text {th }}, 5^{\text {th }}, 8^{\text {th }}$) are considered the most harmonious or consonant. The $3^{{ }^{\text {d }}}$ and $6^{\text {th }}$ intervals also sound rather pleasant.
But the $2^{\text {nd }}$ and $7^{\text {th }}$ intervals can sound somewhat unpleasant or dissonant.

To remember Major Scale's Interval KeyCounts, imagine that $(\mathrm{R})=$ Resident followed by his Social Security Number (SSN):
(R) 245-79-1112

Major Scale
Scale KeyCount (R) 221-2221 Interval KeyCount (R) 245-79-1112

Counting Down		
Intervals can also be reached by		
counting down from the 8 in interval.		
Since an octave has 12 keys:		
UpCount + DownCount $=12$		
Interval	UpCount	DownCount
1st	0	12
2nd	2	10
3rd	4	8
4th	5	7
5th	7	5
6 th	9	3
7 th	11	1
8th	12	0

Chords

A chord is a named group of keys/tones/notes. Chord order defines a song's harmonic structure. This order remains the same even if a song is transposed (changed) to a different Key (scale) to better match the range of a singer's voice or accompanying instruments. To keep the chord names independent of the Key, composers use either Roman Numerals and/or Tonal Names for each chord.

Chords of a Scale

A scale's chords are the triads that can be formed by using only the notes in that scale:
3 Major (1-3-5): I-IV-V +3 minor ($1-3^{\text {b }}-5$): ii-iii-vi +1 diminished ($1-3^{\text {b }}-5^{\text {b }}$): viio

Transposer Chart: To transpose chords or notes

* Determine the Key (scale) of the song from the Key Signature.
* Circle the song's chords (add variations) or notes below.
* Pick the Key to transpose to.
* Box the new chords (add variations) or notes

Example

C-Major
C-Am-G7 (I-vi-V7)
G-Major
G-Em-D7 (I-vi-V7)

Major Chord Numeral	I	II	III	IV	V	VI	VII	I
minor chord numeral	1	11	111	iv	v	vi	Vi1	1
Interval Number	1st	2nd	3rd	4th	5th	6th	7th	8th
Tonal Name	Tonic	Supertonic	Mediant	Subdominant	Dominant	Submediant	Subtonic	Tonic
Chords of Scale	I	11	iii	IV	V	vi	vii ${ }^{\circ}$	I
C Major	(C)	Dm	Em	F	(G) 7	(Am)	Bdim	C
D Major	D	Em	F\#m	G	A	Bm	C\#dim	D
E Major	E	F\#m	G\#m	A	B	C\#m	D\#dim	E
F Major	F	Gm	Am	Bb	C	Dm	Edim	F
G Major	G	Am	Bm	C	D 7	Em	F\#dim	G
A Major	A	Bm	C\#m	D	E	F\#m	G\#dim	A
B Major	B	C\#m	D\#m	E	F\#	G\#m	A\#dim	B
C\#/Db Major	C\#/Db	D\#m/Ebm	Fm	F\#/Gb	G\#/Ab	A\#m/Bbm	Cdim	C\#/Db
D\#/Eb Major	D\#/Eb	Fm	Gm	G\#/Ab	A\#/Bb	Cm	Ddim	D\#/Eb
F\#/Gb Major	F\#/Gb	G\#m/Abm	A\#m/Bbm	B	C\#/Db	D\#m/Ebm	Fdim	F\#/Gb
G\#/Ab Major	G\#/Ab	A\#m/Bbm	Cm	C\#/Db	D\#/Eb	Fm	Gdim	G\#/Ab
A\#/Bb Major	A\#/Bb	C	Dm	D\#/Eb	F	Gm	Adim	A\#/Bb
KeyCounts								
Major Scale	(Root)	2	2	1	2	2	2	1
Major Intervals	(Root)	2	4	5	7	9	11	12
Major Triad	(Root)	---	4	--	7	---	---	---

Print the TRANSPOSER chart (separate lesson section) on cardstock and laminate it so you can use a dry-erase pen to transpose chords or notes.

Chord Progressions

A progression is a specific series of chords.
There are a huge number of possibilities, but certain series have become standards.

Most Popular: I-IV-V7-I

This progression is likely the most popular in western-culture music. Tonic I : Subdominant IV : Dominant Seventh V7 : Tonic I Although not always repeated in this exact sequence, these four chords will weave through the song.

To Do: As shown, play I-IV-V7-I in the Key of C.
Some chords have been inverted for easier finger transitions, e.g., F/C means to play the F chord with the C at the bottom.

Tension-Resolution: V7-I

It's no coincidence that the most popular progression (above) ends with V7-I. In fact, this is the secret to its success. Just as a movie or novel would be boring without some fundamental tension or conflict, so would a song. The V7 chord produces a feeling of tension that excites or disturbs listeners and makes them anticipate the resolution that comes when the Tonic I is played.

To Do: As shown, play the C 7 chord 3 times to establish a feeling of tension, then play the F/C chord to resolve it. Imagine holding your breath on C 7 , then letting it out with a sigh of relief on F .

To Do: Use the previous Chord Numerals chart to fill in the Tonic I chords
 for: A7: \qquad B7: \qquad E7: \qquad Answers: D, E, A

12-Bar Blues: I-I—I-I IV-IV I-I V-IV-I—I

This is the famous 12-Bar Blues Progression, which occurs over twelve measures.
The Left Hand Boogie (separate lesson) follows this pattern with CCCC FF CC GFCC.

Chord Substitutions

When improvising, substituting chords can enhance a song. Here are some common substitutions: vi for I (e.g., Am for C); iii for I (e.g., Em for C); II for ii (e.g., D for Dm); III for iii (e.g., E for Em)

Cadences

A cadence is a progression that ends a musical phrase or the song itself.
To Do: As shown, play the various Cadence samples, listening to their tonal quality.

CADENCE	Perfect (Authentic)	Plagal (A-men)	Imperfect (Half)	Deceptive (False)
Progression	V or V7 to -I	IV-I	I-V	V-not I

Circle of Fifths

The Swiss Army Knife of Music!
The Circle of Fifths is a diagram that composers, arrangers, and you can use as an aid to understanding, creating, or modifying a song. It compactly displays all 12 tones of the keyboard and a wealth of useful information. Observing its construction will help you understand its structure. We'll compare the Circle of Fifths to a pie we'll serve at a CAFE we own.

Step 1: Bake the pie.

Step 2: Cut it into four big pieces.

Step 3: Cut the four big pieces into thirds so we can serve 12 customers.

Step 4: Decorate the four big cut edges clockwise with candy letters: C A F $^{\#} E^{b}$. Customers Always Feel sharp when they Eat flat pies.

Major Scales / Fifths

The Circle of Fifths is so named because it displays Major scale/chord letters at every fifth interval. To reach a $5^{\text {th }}$ interval, we start from the Root and count $u p 7$ keys per the formula [(R) 245-79-1112].

In the following keyboard diagram, we treat $\mathbf{D}^{\mathbf{b}}$ as a Root and count up 7 keys to its $5^{\text {th }}$ interval $\mathbf{A}^{\mathbf{b}}$. Then we treat $\mathbf{A}^{\mathbf{b}}$ as a Root and count up another 7 keys to its $5^{\text {th }}$ interval $\mathbf{E}^{\mathbf{b}}$ and so on until we reach the 12th Root $\mathbf{F}^{\#}$. If we continued to count up another 7 keys from $F^{\#}$, we'd come full circle to D^{b}.

Root $\longrightarrow 5^{\text {th }}$
Root $\longrightarrow 5^{\text {th }}$...and so on through all 12 Roots.

Step 5: Start at the 7 o'clock position with D^{b} and fill in additional candy letters clockwise around the pie in the order we derived them above:

$$
D^{b} A^{b} \text { (Eb) } B^{b} F(C) D \text { (A)E B F\# }
$$

Then add slightly smaller enharmonic (same tone, different name) letters $\mathrm{C}^{\#} \mathrm{G}^{\mathrm{b}} \mathrm{C}^{\mathrm{b}}$ below $\mathrm{Db} \mathrm{F}^{\mathrm{F}} \mathrm{B}$.

Circle of Fourths?

All letters on the keyboard above, counting either up or down, are 7 keys apart, which would seem to make them all 5th intervals of each other.

But named intervals are counted going UP the keyboard, starting from the designated Root key.

For example, if we start with a Root of \mathbf{F} and count up 7 keys, we arrive at \mathbf{C}. Therefore, \mathbf{C} is the $5^{\text {th }}$ interval of \mathbf{F}.

But if we start with a Root of \mathbf{C} and count $u p$ to \mathbf{F},
we've only gone 5 keys, which is a $4^{\text {th }}$ interval per
$[(\mathrm{R}) 245-79-1112]$. So \mathbf{F} is the $4^{\text {th }}$ interval of \mathbf{C}.
But if we start with a Root of \mathbf{C} and count $u p$ to \mathbf{F},
we've only gone 5 keys, which is a $4^{\text {th }}$ interval per
[(R) $245-79-1112$. So \mathbf{F} is the $4^{\text {th }}$ interval of \mathbf{C}.
But if we start with a Root of \mathbf{C} and count $u p$ to
we've only gone 5 keys, which is a $4^{\text {th }}$ interval p
[(R) $245-79-1112]$. So \mathbf{F} is the $4^{\text {th }}$ interval of \mathbf{C}.
The Circle of Fifths is meant to be read in a clockwise direction, going up a $5^{\text {th }}$ from letter to letter.

But if read in a counterclockwise direction, it goes up a $4^{\text {th }}$ from letter to letter.

For that reason, you'll sometimes see it referred to
 as the Circle of Fourths!

Relative Minor Scales

The Relative Minor Scale starts on the $6^{\text {th }}$ position of its corresponding Major scale but shares all the same keys, including sharps or flats, as the Major scale. The $6^{\text {th }}$ position is 9 keys $u p$ [(R) 245-79-1112] from the Root, which is the same as 3 keys down $(9+3=12)$.

In the following keyboard diagram, we count 3 keys down from each of the 12 Roots to their respective relative minor 6ths. For example, treating $\mathbf{D}^{\mathbf{b}}$ as a Root and counting 3 keys down yields its $6^{\text {th }}$ interval $\mathbf{B}^{\mathbf{b}}$ which starts the relative $\mathrm{B}^{\mathrm{b}} \mathrm{m}$ scale.

Step 6: Starting at D^{b}, create and decorate an inner ring of the pie clockwise with minor candy letters in the order we derived them above:
$B^{b} m \mathrm{Fm}$ Cm Gm Dm Am Em Bm F\#m C"m Abm Ebm Add smaller enharmonic candies $\mathrm{A}^{\#} \mathrm{~m} \mathrm{D}^{\#} \mathrm{~m} \mathrm{G}^{\#} \mathrm{~m}$ below the three bottom minor letters $\mathrm{B}^{\mathrm{b}} \mathrm{m}, \mathrm{E}^{\mathrm{b}} \mathrm{m}, \mathrm{A}^{\mathrm{b}} \mathrm{m}$.

Sixth Interval

Dropping the minor " m " from the letters on the inner ring yields the $6^{\text {th }}$ interval of each Root on the outer ring. For example, moving in from the C Root yields Am. Dropping the " m " yields "A," which is the $6^{\text {th }}$ interval of C .

4th / 5th / 6th Intervals

So from any Root on the outer Circle:

* Counterclockwise $=4^{\text {th }}$ interval

* Clockwise $=5^{\text {th }}$ interval
* $\mathrm{In}=6^{\text {th }}$ interval (without the " m ")

Be sure to shift your up/down/left/right orientation as you travel around the Circle.

Key Signatures

After adding an inner medallion to the center of our pie with "Circle of Fifths" icing, we'll label the cut of each Key with the sharps or flats that make up its Key Signature (same for both the Major and its Relative Minor scale). The C / Am Scales have no sharps or flats, so their cut will remain empty.

Sharps

Step 7: Key Signature sharps follow the Major Scale letters clockwise on the outer ring from \mathbf{F} to \mathbf{B}. Imagine greeting your customer, Bee, with a (FanCy Good DAyE Bee!) ${ }^{\#}$ while you decorate the right cuts of the pie with sharp candy letters.

Scale
Key Signature
C / Am
G/Em F ${ }^{\text {\# }}$
$\mathrm{D} / \mathrm{Bm} \quad \mathrm{F}^{\#} \mathrm{C}^{\#}$
$\mathrm{A} / \mathrm{F}_{\mathrm{m}} \quad \mathrm{F}^{\#} \mathrm{C}^{\#} \mathrm{G}^{\#}$
$\mathrm{E} / \mathrm{C}^{\#} \mathrm{~m} \quad \mathrm{~F}^{\#} \mathrm{C}^{\#} \mathrm{G}^{\#} \mathrm{D}^{\#}$
$\mathrm{B} / \mathrm{G}^{\#} \mathrm{~m} \quad \mathrm{~F}^{\#} \mathrm{C}^{\#} \mathrm{G}^{\#} \mathrm{D}^{\#} \mathrm{~A}^{\#}$
$\mathrm{F}^{\#} / \mathrm{D}^{\# m} \quad \mathrm{~F}^{\#} \mathrm{C}^{\#} \mathrm{G}^{\#} \mathrm{D}^{\#} \mathrm{~A}^{\#} \mathrm{E}^{\#}$
$C^{\#} / A^{*} m \quad F^{\#} C^{\#} G^{\#} D^{\#} A^{\#} E^{\#} B^{\#}$

Flats

Step 8: Key Signature flats follow the Major Scale letters counterclockwise from \mathbf{B}^{b} to $\mathrm{E}\left(=\mathrm{F}^{\mathrm{b}}\right.$). Imagine decorating the left cuts of the pie with flat candy beads and telling your customers to take a look by saying (BEAD Go Cee Flats).

Using Circle to Find Major Scale Chords

There are several ways to use the Circle of Fifths to find the 3-note triads formed using only the keys of each Major Scale. When composing a new song, these chords tend to sound good together (except for the diminished chord). When picking out an existing song by ear, these chords are likely to match the melody.

(Semi) Circle the Chords

Starting with the chord counterclockwise to the desired I chord, draw a semicircle to discover the scale's 3 Major, 3 minor, and 1 diminished chords.

Arch the Chords

Draw a large arch around the IV-I-V outer chords and the corresponding ii-vi-iii inner chords and a small arch around the adjacent vii ${ }^{\circ}$ chord to the right.

House the Chords

To find the triads in order, start with the desired Root \& draw a I-iii-iii roof perched on top of a IV-V-vi-vii ${ }^{\circ}$ house.

Notice how every other letter is connected.
ii

To Do
Arch the Chords of D^{b}
(Use benharmonics)

Using Circle to Transpose

When a song is too high or low for a singer's voice range, you can transpose it to a different Key.

Trace to Transpose

Trace the original Key's chord or note pattern. Move to the desired starting chord/note and trace the same pattern. Use consistent enharmonics and add chord variations (m, 7, etc.) to match.

To Do
Transpose the Original pattern to Db . (Use b enharmonics)
Db Gb Eb Ab Db

Original
$E^{b} \mathrm{c}$

Using Circle to Extend a Chord Progression

The order or progression of chords helps define a song. The V7 chord creates a feeling of tension, hence interest, that is resolved by playing the corresponding I chord. Here's one way to extend that tension.

T for Tension

To prolong V7 chord tension, travel counterclockwise to the adjacent I chord but follow the red "T" to play it as a V7 chord. Repeat as desired until resolving to a final I chord.

To Do Play this chord progression to hear the extended tension and final resolution.

Circle of Knowledge!

There's a wealth of information stored in this compact wheel!

Key Signatures

Sharps/flats along circle spokes:
F\# C $\mathrm{G}^{\#} \mathrm{D}^{\#} \mathrm{~A}^{\#} \mathrm{E}^{\#} \mathrm{~B}^{\#}$
(FanCy Good DAyE Bee!)\#
$B^{b} E^{b} A^{b} D^{b} G^{b} C^{b} F^{b}$ (BEAD Go Cee Flats) ${ }^{b}$
To find Major Key:
Sharps are keyed up: $\overparen{F \#}=G$
Flats are laid back: $\mathrm{B}^{\mathrm{b}} \mathrm{E}^{\mathrm{b}}=\mathrm{B}^{\mathrm{b}}$

- Except First Elat $\left(B^{\mathrm{b}}\right)=\underline{\mathrm{F}}$

If song ends on:

* Major chord: Major Key
* Minor chord: minor Key

Using the Circle

Refer to accompanying page for:

* Arch IV-I-V / ii-vi-iii viio chords
* House I-ii-iii / IV-V-vi-viio chords
* T for Tension: V7 to I
*Trace to Transpose

Scales / Intervals
Outer Ring: Major Scales Inner Ring: Relative minor scales
From any Major Root:

* Counterclockwise $=4^{\text {th }}$ interval
* Clockwise $=5^{\text {th }}$ interval
* $\ln =6^{\text {th }}$ interval (without the " m ")

Chords / Notes

Outer Ring: Notes of octave
Major I Chords
Inner Ring: minor vi chords
From any Major I chord:

* Counterclockwise = IV chord
*Clockwise $=\mathrm{V}$ chord
* $\mathrm{In}=$ minor vi chord

