

Shape Operators

Geometry uses special operators to show relationships between shapes.

GeoParts

These "Geometry Parts" can be used to build almost any shape.

Point to (x,y,z) and Me!

Points can be designated by coordinates [coh-OR-di-nutz] on axes [AX-eez]. Each individual axis [AX-iss] is named with a letter: x, y, or z.

Family Lines

www.maxlearning.net * Math \ Geometry Gems © 2/2/2011 * Page 4 of 15

The Angle Boys

An angle [ANG-ul] is formed by two rays joined by a common endpoint called the *vertex*. Angles are also formed when segments, lines, and other GeoParts intersect.

Angular Relations

Polygons

Polygons are closed figures formed by line segments that create angles. Each intersection of line segments is a **vertex**. The plural of vertex is **vertices**.

Name	Figure		Name	Figure
Triangle (3 angles)	\bigwedge	Poly = many gon = angle lateral = side	Heptagon (7 angles)	
Quadrilateral (4 sides)		The number of sides equals the number of angles.	Octagon (8 angles)	
Pentagon (5 angles)		Regular Polygons	Nonagon (9 angles)	
Hexagon (6 angles)		All sides/angles congruent.	Decagon (10 angles)	
		rregular Polygon all sides/angles congre		

Triangles

Triangles are polygons with three sides, three angles, and three vertices.

Side Classifications (<u>S I</u> d <u>E</u>)			Angle Classifications (<u>A R O</u> s r)		
Name	Congruent Sides	Example	Name	Angle/s	Example
<u>S</u> calene skalenos = uneven	0		<u>A</u> cute	All < 90°	
<u>I</u> sosceles Iso = equal skeles = legs	Iso = equal 2 equal 4		<u>R</u> ight	1 = 90°	
<u>E</u> quilateral Equal sides (aka Equiangular)	3		<u>O</u> btuse	1 > 90°	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Line to Triangle Straight line = 180° 60° When a 180° line is folded into a triangle, the inside angles <i>always</i> add up to 180°.		

www.maxlearning.net * Math \ Geometry Gems © 2/2/2011 * Page 10 of 15

Quadrilaterals

,	Fypes of Quadrilater	als	Pair-a
Name	Features	Figure	Telegram
Parallelogram	 Opposite sides parallel. Opposite sides congruent. Opposite angles congruent. Diagonals bisect. 		Rhom [in
Rectangle	 Special Parallelogram All right angles. (A square is also a rectangle) 		
Square	 Special Parallelogram All right angles. All sides congruent. 	\rightarrow + +	How to 7 Zoid
Rhombus	 Special Parallelogram All sides congruent. (A square is also a rhombus) 	£	<u>*</u> -
Trapezoid	Quadrilateral • One set of parallel sides.		\cap

Quadrilaterals are polygons with four sides, four angles, and four vertices.

Interior Angles

www.maxlearning.net * Math \ Geometry Gems © 2/2/2011 * Page 11 of 15

Area of Polygon

Area [AIR-ee-uh] is the number of *squares* that will fit on the surface of the polygon. *Area* is Latin for "level ground" or "open space."

Area of Parallelogram

Since a parallelogram can be made into a rectangle, its area is base times height.

Parallelogram Features: Opposite angles are congruent; Diagonals bisect each other.

Area of Triangle

Since a triangle is half a parallelogram, its area is ¹/₂ base times height.

Area of Trapezoid

Since a trapezoid can be split into two triangles, its area is a combination of both.

$$\mathbf{A}_{_} = \frac{1}{2}b_1\mathbf{h} + \frac{1}{2}b_2\mathbf{h} = \frac{1}{2}(\mathbf{b}_1 + \mathbf{b}_2)\mathbf{h}$$

Area of Regular Polygon

Since a regular polygon can be split into triangles, its area is equivalent to the sum of the areas of all triangles inside it. The area of one internal triangle is $\frac{1}{2}$ sa where s = side of polygon (base) and a = apothem (height). The sum of all sides of the polygon is its Perimeter P = $s_1 + s_2 + s_3...$ Therefore the area of all triangles in a polygon would be $\frac{1}{2}$ Perimeter times apothem.

$$\mathbf{A}_{\bigcirc} = \frac{1}{2} \mathbf{Pa}$$

Apothem [A-puh-thum] The line segment from the center of a regular polygon to the midpoint of a side.

The apothem is the height of every internal triangle.

The perimeter is the sum of the sides which make up the bases of all the triangles.

Circles

A circle is a set of points equidistant from a center point.

Imagine the small c in arc is a part circle.

www.maxlearning.net * Math \ Geometry Gems © 2/2/2011 * Page 15 of 15